
Chapter 1

From Junior to Senior

This is a free chapter of the Coding Career Handbook! It is part
of a sequence of Career Guides from Code Newbie to Senior Dev
and Beyond, and it’s yours to keep. Enjoy!

As you become comfortable as a Junior Developer (and, if your company
has one, an intermediate level Developer/Software Engineer), you will
naturally start looking toward the next level: Senior Developer.

What counts as a senior developer is not standardized, and everyone
has strong opinions about it. To some, it is three years at a high growth
startup. Others can take anywhere from two to eight years. Still others
say they don’t care about number of years (and may or may not mean it).

What other people think only counts so much. What really matters is
what your company (or the other companies you interview at) looks for
in a Senior, and whether they pay you commensurate with the market
rate for Senior Developer. After all, a Senior title without the pay is
meaningless!

If you’re lucky, the company will have an Engineering Ladder where you
can see their requirements for a Senior. If not, you can check our dis-
cussion of Engineering Ladders in the Strategy section (Chapter 26).

Ultimately, getting that role as a Senior Developer is a two step process:

1. Getting enough (not all) of the prerequisite skills and accomplish-

https://www.learninpublic.org/
https://twitter.com/copyconstruct/status/1260350540212404226
https://twitter.com/copyconstruct/status/1260350540212404226


2 Chapter 1: From Junior to Senior

ments specified by the company

2. Successfully Marketing Yourself as meeting enough of those re-
quirements to be hired into that role

This means that you often have to act like a Senior Engineer before you
officially become one. Fortunately, this ismuch easier than the chicken-
and-egg problem of getting your first job - most places will be happy to
let you take on more responsibility while in your existing role!

1.1 Acting For the Job You Want

When surveyed, developers almost universally identify a few qualities
that you should develop as you prepare for the next level:

• Solid technical expertise, full command of fundamentals

• Impact on your team’s work

• Being able to work across other teams

• Seeing the “Bigger Picture”

• Communication, Communication, Communication

• Mentoring others

Regardless of what your Engineering Ladder says, you will want to prac-
tice, practice, practice these skills as much as you can. They are just

https://twitter.com/dan_abramov/status/1260762854631800835
https://twitter.com/dan_abramov/status/1260762854631800835


Acting For the Job You Want 3

generally agreed upon qualities of a Senior Engineer that will help you
and those around you throughout your career.

Note: More on this in the Senior Dev chapter!

1.1.1 Technical Expertise

When it comes to your technical skills, consider howyou are progressing
along the Dreyfus Model of Skill Acquisition:

In your journey so far, you have likely progressed from Novice to Com-

https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition


4 Chapter 1: From Junior to Senior

petent. As you go towards Expert in your field, you will likely want to
pay attention to the meta-learning skills - focusing on first principles
intuition (Chapter 17) when it comes to learning your trade.

Muchof your learning from Junior to Senior involves gaining tacit knowl-
edge. You can read all the programming books in the world, but, by def-
inition, you are still limited to things that people can write down. That
is explicit knowledge, and it is usually the tip of the iceberg when it
comes to everything you need to know:

Tacit knowledge in engineering is a real thing. Keep a look out for all
the lessons you don’t learn in classes or from books. To really make
your career explode, make a habit of writing them down for everyone
else (Chapter 18 -Write, A Lot!).

https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/


Acting For the Job You Want 5

You aren’t alone in this journey – plenty of fellow developers have also
written down their learnings. You can only get so far learning from your
own experience – why not borrow the experiences of others? It’s not
the same as living through it yourself, but for example, reading through
publicly published postmortems can teach you that many outages, even
by the most well regarded companies, come down to error handling,
configuration, hardware, lack of monitoring, and processes that allow
human error.

1.1.2 Career Strategy

Many people define Senior Developers as “being able to see the Bigger
Picture”. Everyone agrees it’s important, but nobody quite knows how
to define it. It has something to do with how your technical work fits
in context of the business/product, or fits in the broader architecture of
the codebase, balancing both its history and future roadmap. So try to
step back from your day-to-day work every so often and zoom out!

Before you make your big move, make sure you know what you want
and take the time to position yourself accordingly in the preceding 6-12
months. Want to work on creating GraphQL APIs as a Senior? Better to
do it as a Junior first. The logic here is: You aren’t expected tomake that
much impact as a Junior, but you certainly will as a Senior. So it can be
worth it to jockey around a little bit longer as a Junior or Intermediate
Developer, just so you are in the perfect spot for a career-making Se-
nior Developer role you can throw yourself wholeheartedly into. Better
yet, your company can institute formal support for employees making
internal “tours of duty”, to grow you while keeping you!

http://danluu.com/postmortem-lessons/
http://danluu.com/postmortem-lessons/
https://hbr.org/2013/06/tours-of-duty-the-new-employer-employee-compact


6 Chapter 1: From Junior to Senior

It can help to make a list of what you’ve enjoyed in your current job.
Among your peers (you have been building your network, right?), make
a note of things that seem particularly exciting to you, and try to get
exposure to those within your company or projects. It’s a twoway street
- finding out what you like and are good at, and then positioning so that
you can do even more of that.

Note: This is the subject of the entireStrategy section of this book!

By the way - beyond just what you like to work on, you might also take
note ofwho you like toworkwith. Here’s an example fromKeavyMcMinn.

1.2 Marketing Yourself as a Senior Engineer

You may feel like you’re not fully ready yet. You haven’t checked off
all the boxes for the Senior Engineer job or promotion you’re applying
for. It doesn’t hurt to try. You don’t know if it’s impostor syndrome
talking, and even if you fail the first time, you get priceless feedback and
practice for the next time!

Remember the Dunning-Kruger effect between what you know and
what you know you don’t yet know:

https://keavy.com/work/who-i-want-to-work-for/
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect


Marketing Yourself as a Senior Engineer 7

People crossing from Junior to Senior are particularly likely to be at or
just coming out of the “Valley of Despair”. There’s no point on that
curve where you magically become irrefutably Senior. It’s all a spec-
trum, and perhaps the only thing common among Seniors is having re-
covered from both the heights and troughs of confidence vs ability. You
can ask other people how you’re doing or teach what you know to keep
some perspective.

Devs fromminority backgrounds can face systematic bias (conscious or
unconscious) in their evaluation. This is both unfair and a fact of life.



8 Chapter 1: From Junior to Senior

A sponsor with credibility can help you a long way – if you have trou-
ble finding one, Mekka Okereke has a technique he calls “The Difficulty
Anchor”, which is hard work but a great strategy to win a powerful ally.

As you start marketing yourself as a Senior Dev, you’ll want to have your
accomplishments and stories in order. Just to give you an example, the
AWS interview process involves asking you for examples of accomplish-
ments and interactions that demonstrate one of their 14 Leadership
Principles. Most companies may not be this formal about it, but will
have some form of “Tell me a time when you…” question. Portfolios
and Proof of Work still matter, but less so because you can choose to
lean on a lot of the production work you contributed to as a Junior. Pay
particular attention to any quantitative results you can cite – cost sav-
ings per year, Monthly Active User increases, Time To Interactive drops,
whatever metrics make you look good.

In particular, anything you do in public - blogging, speaking, podcast-
ing, making video tutorials, open source work - can help you grow your
knowledge and your network at the same time, opening up the possi-
bility for inbound opportunities to come to you. Remember to fight Im-
postor Syndrome every step of the way!

Note: You can find more ideas in theMarketing Yourself chapter
(Chapter 39) of the Tactics section.

https://twitter.com/mekkaokereke/status/1027552576454021120
https://twitter.com/mekkaokereke/status/1027552576454021120
https://www.amazon.jobs/en/principles
https://www.amazon.jobs/en/principles


Junior Engineer, Senior Engineer 9

1.3 Junior Engineer, Senior Engineer

For Junior Engineers who want some ideas for directions to improve, it
can be an interesting exercise to do a series of contrasting statements. I
went through a long list of Junior-to-Senior advice online, and compiled
these ∼30 comparisons in four categories: Code, Learning, Behavior,
Team. Please note that these are pithy opinions, not requirements! We
are all junior in some way, senior in others. You’ll find that elements of
these ideas permeate the Principles, Tactics, and Strategies throughout
this book.

1.3.1 Code

• Juniors collect solutions. Seniors collect patterns.

• Juniors get code working. Seniors keep code working.

• Juniors deliver features. Seniors deliver outcomes.

• Juniors fix bugs after they create them. Seniors create tooling to pre-
clude bugs.

• Juniors write tests because it’s required. Seniors require writing good
tests – because they’ve seen what happens when you don’t.

• Juniors hate technical debt. Seniors have written code that became
technical debt (and know when to let it be and when to migrate).

• Juniors love to keep code DRY. Seniors Avoid Hasty Abstractions.

https://kentcdodds.com/blog/aha-programming/


10 Chapter 1: From Junior to Senior

• Juniors try to write the best code the first time. Seniors understand
code is read, moved, copied and deleted far more than it is written.

• Juniors know how to use their tools. Seniors know when not to use
them.

1.3.2 Learning

• Juniors make one-off side projects. Seniors use their side projects
daily, often to make themselves more productive at their day job.

• Juniors learn to find the right answers. Seniors learn to ask the right
questions.

• Juniors know what they need to know. Seniors know what they don’t
need to know.

• Juniors should absorb best practices from others. Seniors can derive
best practices from first principles and personal pain.

• Juniors get stuck without docs and tutorials. Seniors aren’t afraid to
read specs and view source.

• Juniors might have strongly held beliefs. Seniors have had to change
strongly held beliefs.

• Juniors question themselves when they fail. Seniors know they just
need to give themselves more time and try again.

• Juniors stay on top of news. Seniors keep track of trends (especially
Megatrends – Chapter 29).



Junior Engineer, Senior Engineer 11

• Juniors try to avoidmistakes. Seniors havemade them all – and know
how to recover.

• Juniors laugh at software tropes. Seniors know there’s a grain of truth
in all of them.

1.3.3 Behavior

• Juniors seek The Best. Seniors love the Good Enough (Chapter 16).

• Juniors should say “Yes” often. Seniors should say “No” more.

• Juniors should try to do the jobs they are given. Seniors should re-
design their jobs as needed.

• Juniors complain aboutOpenSource. Seniors understandOpenSource
only works thanks to contributors, not complainers.

• Juniors solve problems. Seniors identify problems before they be-
come problems.

• Juniors start fromwhat others say. Seniors start fromwhat they need.

• Juniors know how to build. Seniors know when to buy.

• Juniors compare developer experience. Seniors look for hidden costs
in user experience and in abstraction leaks.

• Juniors write as an afterthought. Seniors weigh writing as much as
coding.



12 Chapter 1: From Junior to Senior

• Juniors leave comments. Seniors provide context.

1.3.4 Team

• Juniors work within their teams. Seniors know when and how to work
across teams.

• Juniors grow their own output. Seniors grow their team’s output.

• Juniors pair to learn best practices. Seniors pair to share expertise
and see things in a new light.

• Juniors get roped in. Seniors get buy-in.

• Juniors must earn trust. Seniors inspire trust.

• Juniors seek out mentors. Seniors know how to learn from peers.

• Juniors work on improving themselves. Seniors work on improving
their team, being a force multiplier through teaching, mentorship,
and leadership.

Note that these are pithy, idealized comparisons just to get your
imagination going on ways to improve yourself. In no way am I
stating that any quality is unique to Juniors or Seniors, or that all
Seniors or all Juniors practice all these qualities all the time.



To Stay or To Go 13

1.4 To Stay or To Go

Finally, there’s the question of whether to angle for promotion at your
current company or to make the Senior Developer jump at a different
company. That’s a call you’ll have to make, but you will always be
better off at least interviewing at other companies. When you have
an offer in hand from another company, you have a pretty much airtight
case for promotion at your current company.

You’ve done the job hunt before; it’ll be a lot easier this time. Beside
hunting via the regular channels (online posting, networking at mee-
tups and conferences), you should also be aware of new opportunities
available to you at this stage. For example, recruiters of all stripes from
in-house, third party, and venture capital will be more receptive to your
cold emails. You can also tap your relationships formed online (via your
writing or Twitter— you have been working on those, right?) to find op-
portunities before they get advertised. A warm intro of any sort beats
applying via the front door and competing with everyone else on a 5
second glance of your resume. Finally, a big part of selling yourself as
a Senior Developer is being able to communicate your level of experi-
ence in an interview - storytelling becomes a surprisingly big part of any
senior hiring process.

Salary bumps are well known to be higher when you move companies -
instead of a 5-10% bump, you could get a 50-400% bump because you
could join a company with a different pay scale in a different indus-
try at a different level in a different city. Of course these are major life
changes, but higher bumps aremore commonwhenmoving companies.
There’s also the simple fact that you didn’t have much leverage when
you were a junior dev. Now, you can actually take your time and prac-

https://stanete.com/storytelling-tips-technical-interviews


14 Chapter 1: From Junior to Senior

tice some Negotiation (Chapter 31).

You may also wish to diversify your resume. If you move from junior
to senior in the same company, you have less exposure to a variety of
projects, technologies, opinions and cultures. If you’re at an agency,
youmay wish to consider moving to a startup. If you’re at a startup, you
may wish to consider a BigCo. BigCo experience can net you big bucks
at some forms of agency (including freelancing). So on and so forth.
The earlier you are in your career, the easier it will be to hop around to
figure out where you truly fit.

If you currentlywork at a place that doesn’t have a gooddeveloper brand,
you may wish to move to one that does, which will help boost your net-
work and personal brand. Few people question the technical ability of
ex-Google engineers.

Conversely, if you currently work at a place with a good brand, you may
wish to take more risk in your next gig for more personal growth and
financial upside, because the risk of failure is lower.


	From Junior to Senior
	Acting For the Job You Want
	Technical Expertise
	Career Strategy

	Marketing Yourself as a Senior Engineer
	Junior Engineer, Senior Engineer
	Code
	Learning
	Behavior
	Team

	To Stay or To Go


